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Recommender Systems : Example
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Recommender Systems : Example

Frequently bought together

Total price: $256.78

0 @ ==
+ + w
Add all three to List

{ These items are shipped from and sold by different sellers. Show details

This item: Nikon 7540 MONARCH 3 8x42 Binocular (Black) $228.55
Nikon 6121 PROSTAFF Bino Harness $18.24
Nikon LensPen Cleaning System $9.99



Recommendations: More Amazon Examples
* Prime Video : movie recommendations

— BAra-nmE

« Recommendations for Sellers

* Other examples:
= Amazon Music : song recommendations
* Prime Pantry recommendations based on non-pantry items
= Audio books (Audible)
* Personalized Search (searched for XXX also searched for YYY)
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Why is this important to Amazon ?

* Better user experience and increased loyalty

» Opportunity to meet a variety of special needs and tastes

* Increased earnings
McKinsey Report (2013)
35% of the purchases on Amazon are the result of their recommender system,
according to McKinsey.

Jeff Bezos - 2016 Letter to Shareholders

But much of what we do with machine learning happens beneath the surface. Machine learning drives our
algorithms for demand forecasting, product search ranking, product and deals recommendations, merchandising
placements, fraud detection, translations, and much more. Though less visible, much of the impact of machine
learning will be of this type — quietly but meaningfully improving core operations.




Other Commercial Recommender Systems

* Alibaba

* Personalized landing pages -> 20% increase in conversion rate

* Youlube
= 70% videos are from recommendations

* NetFlix

= 75% of movies watched are from recommendations (McKinsey)
= Recommendations save NetFlix $1B per year (Netflix Execs)

* Best Buy

= 23.7% increase in sales in 2016 due to recommender system

* Many others: e.qg. Spotify, Twitter followers, online dating apps.



Recommender Systems & MFDR

What does MF or DR have to do with Recommender Systems
?

As the Netflix Prize competition has dem
onstrated, matrix factorization models
are superior to classic nearest-neighbor
techniques for producing product recom-
mendations, allowing the incorporation
of additional information such as implicit
feedback, temporal effects, and confidence
levels.

Yehuda Koren, Yahoo Research
Robert Bell and Chris Volinsky, AT&T Labs—Research



User/Ratings Matrix for Toy Example

User Preferences for Movies Movie Content
Color | Princes Lion
Purple | s Diary King
Romance
Betly 1 x vs. Action —

0 1 e 3 6
m 04 06 Serious

Color Princess Lion
Purple Diary King
Betty 8 7 4

Dave 2 3 6
4.2 3.9 5.2




Invert the Problem Now

Suppose we are given a rating matrix instead, we do not know genres and user preferences
But if we could “factorize” the matrix as

10000 users

5000 movies

Lower dimensional
\ representation of
users/movies in terms of
latent factors

5000 movies 50 “factors”

Then we can take the dot product of the user and movie representation in terms of latent factors to predict
rating for a movie user has not yet rated. That is, we can make recommendations !!!



Representation in terms of Latent Factors

Cosine Similarity

‘B
’ sim(A, B) = cos(0) = ||AA||W




Example of Latent Factors: Netflix
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Other Applications: Topic Modeling

Word 1 Word 2 Word n

Word 1 | Word 2 | Word n Theme 1 [ Theme 2

Theme 1 0.5 0 1 x'l’wooti 1 0
Tweet 2

Theme 2 0 0.5 0 0 1

Tweet 3 0 3



Singular Value Decomposition (SVD)

Any m x n matrix X admits an SVD given by X = UEV?’, where

e U is m x m and orthogonal (orthonormal), i.e. UTU =1

e V is n x n and orthogonal (orthonormal), i.e. VIV =1

e X is a diagonal m x n with non-negative real numbers on the diagonal
e U form a basis for the columns of X.

e V form a basis for the rows of X.

e Unique if diagonal entries of ¥ are in decreasing order, and U,V are
normalized.

e Diagonal entries in X are called singular values of X
e Columns of U are left singular vectors of X
e Columns of V are right singular vectors of X

e Rank of X is the number of non-zero diagonal entries of X

VT
mxm mxn nxn
“Slim” SVD
Ty oW
rxr rxn
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DR with SVD:
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Generic Matrix Factorization

. d Z min | X - UVT|%

1 T2 2 2
UeRm*r,V eRnx- IX = UV + MlUlE + AVI[%

x _
5000 movies

T e min IX —UVTz
User Embedding _—__—::::“ UeRm xr‘VERnxr :_-;.u



Gradient method

Suppose that f : R" — R. An unconstrained optimization problem is

minimize f(z)

The gradient method is

htl = gk — oFV f(2F)

(10.1)

Enaptent DESCENT




Gradient Descent

1. Given m x n matrix X and loss function L(U,V;X)
2. Initialize U, V randomly.

3. At cach iteration step:

e Sot (U, V) =(U-\VyL(U,V;X),V-AVyL(U, V; X))



Stochastic Gradient Descent - MiniBatch

1. Given m x n matrix X and loss function L(U, V:; X)
2. Initialize U, V randomly.
3. For each epoch,

e [or each batch.

— Extract b data points from X at random to form X,
— Set U =U-AVyL(U,V;X,)
— Set V=V-AVyL(U,V;X,)



SGD Mini-batch

U \'}
Movie
Embedding
Users x Movies User

Ratings matrix Embedding



Incomplete Matrix Factorization

Let R be the set of all (user, movie) pairs that have ratings.

I{l_ligrl E (Xi; = U'V;)?
" (i.j)ER

* Use only known ratings to learn U,V

* Required assumption: every user has rated atleast one movie
and every movie has atleast one user rating (no
zeros/columns)

 All algorithms work exactly the same except only use
available data points.



ALS with Incomplete Matrix

e. LA

Jqarn Matrix Factorization
Alternating Least Squares (ALS)

(W) s1010e4 2100

User Factors (U)

|terate:

u; = arg min E (rij —m; - w)?
1 ;
JENIi]

— - . Can )2
mj = argmin E (rij — ui - w)
i€N[j]
http://dl.acm.org/citation.cfm?id=1424269




Topic Modeling: Examples

 What's trending on twitter?
= 200 billion tweets a year., 0.5 billion tweets daily

 What's being discussed by congress?
= 100s of congress bills/year?

* What research topics are hot?
* 10k active NIH grants



What is Topic Modeling?

* Given a large corpus of documents:

* Find groups of words that are semantically related (topics)
* Find topics present in each document

A Bi-clustering problem (words and documents)
= "soft” clustering (allow multiple assignments)
* A form of feature reduction
= Vector representation of a document using topics as features



Topic Model - Example
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THANK YOU!
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